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Abstract-Finite breathing motions of multi-layered, long, circular cylindrical shells of arbitrary wall
thickness are investigated on the basis of the theory of large elastic deformations. The materials of the
layers are assumed to be isotropic, elastic, homogeneous and incompressible. The governing non-linear
ordinary differential equation is solved partially to give the frequencies of oscillations in an integral form,
An approximate solution technique based on Galerkin's orthogonalization process is also formulated to give
complete solutions. A tube consisting of two layers of neo-Hookean materials is solved both by exact and
approximate methods. An excellent agreement is observed between the two sets of results.

INTRODUCTION

The dynamic behavior of thick-walled bodies undergoing large elastic deformations has
attracted attentions of several researchers after the notable works of Knowles [1, 2] on the large
amplitude radial oscillations of long circular cylindrical tubes. Based on Knowles work, Guo
and Solecki [3] and Wang[4] analyzed finite amplitude oscillations of spherical shells. In all
these works, the material of the shell is assumed to be elastic, homogeneous, isotropic and
incompressible. The incompressibility condition reduces the problems to a single degree of
freedom system and, as a result, the non-linear equation of motion becomes integrable. When
oscillatory motions exist, an expression for the frequency of oscillations is obtained in a form
involving an improper integral.

Nowinski and Wang[5] developed a Galerkin type process for thick-walled cylinders to
obtain an approximate but complete solution to the problem. Wang and Ertepinar[6] adopted
the Galerkin procedure stated in[5] to study the large amplitude oscillations of laminated
thick-walled spherical shells. The results obtained in[6] compared favorably with those ob
tained by the exact formulation for moderately large amplitudes. Recently, Benveniste [7]
considered the same problem and solved the governing non-linear ordinary differential equation
by first decomposing it into two first-order equations and then applying a Runge-Kutta
integration scheme. Numerical results are given in[7] for three, four and five layer shells.

In the present work, large amplitude radial oscillations of multi-layered, long, circular,
cylindrical tubes are investigated. The layers are assumed to be of arbitrary thicknesses and
made of isotropic, elastic, homogeneous and incompressible materials. The formulation is based
on the theory of finite elastic deformations [8]. The tube is assumed to undergo radial motions
by a sudden application of inside gas pressure. The pressure is assumed to obey ideal gas law.
The governing non-linear ordinary differential equation is written in an integrated form suitable
to obtain an expression for the frequencies of oscillations. To provide some numerical results, a
tube of two layers, each made of a different neo-Hookean material, is considered. An
approximate solution procedure suggested in [5] is also formulated and applied to a tube of
identical properties. An excellent agreement is observed between the two sets of results for all
amplitudes.

FORMULATION OF THE PROBLEM

Consider a long, circular, cylindrical tube consisting of N concentric layers of arbitrary
thicknesses. The material of a layer is assumed to be isotropic, elastic, homogeneous and

tPresentIy at the Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PAI9104,
U.S.A., on leave of absence from METU.

717



718 A. ERTEPINAR

incompressible with a strain energy density function W; (I, II) where i denotes the layer and I
and II are, respectively, the first and the second strain invariants. If the tube undergoes pure
radial motions (breathing motions) due to a sudden pressure pulse applied uniformly over the
inner lateral surface of the tube at t == 0, a material point at (r, 0, z) in the current state at time t
is at (R, 0, z) in the unstressed state. Due to the incompressibility of the layers

(I)

where R, and 'i denote, respectively, the inner radii of the ith layer at the unstressed and
stressed states. Equation (I) implies that the radial motion of the tube is completely described
once the inner radius rl is determined as a function of time. Letting i == I, and differentiating
with respect to time twice, eqn (I) gives

.. .. 1 2. 2
rr == r,r l -? rl r,

where a dot denotes partial differentiation with respect to time.
Introducing the notation

the strain invariants and the stress field are given by

I II==I+Q+Q-',lI/==l,

T 11 == <pQ-1 + l/J(1 +Q-I) +P,

T
22 == r-2[<PQ + l/J(I + Q) + p],

T
33 = <P + l/J(Q + Q-'I) +p,

where

(2)

(3)

(4)

(5)

(6)

and p is an unknown pressure.
The equations of motion in°and z directions imply that p is a function of rand t only. The

motion of the tube is governed by the equation of motion in the radial direction,

(7)

where p denotes the current mass density at r.
Integrating eqn (7) from Q, to QN+I and considering continuity conditions at the interfaces

where

..:(;. 2 .2 (SI - SH)
- """ ml1) 1) ( 2 S ) ( 2 S )

1=1 1) + ; 1) + ;-1

50 == Rr+I_ 1
t R/ '

ml == PII po, Po a reference density,

- - 2P'n . 'dp - P
O
R

t
2 ' Pin == current mSI e pressure,

1 N LQ ,+· (I + Q)
!(W;)== --R2L (<!>;+l/JI)-Q2 dQ.

po 1 1=1 Qi

(8)

(9)
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Here, we note that, eqn (8) reduces to eqn (3) of Ref. [2] for a single layer tube.
Equation (8) is the exact second order non-linear differential equation governing the motion.

It can be rewritten in an integrated form as

- f(U/) d [1 2·2 ~ I (1/2+ SJ
m

, ]
1/P == 1/ n i + -d -2 1/ 1/ ~ n ( 2+ S. )m, .1/ .~I 1/ ,-I

(10)

APPLICATION TO A TWO-LAYER TUBE

Let the inside gas pressure change according to the ideal gas law, pv a == constant, where a is
the polytropic constant and v is the specific volume. Thus, if p?" is the initial pressure, then

_ 2p~1/ -2a
p == R 2 •po I

(11)

Assume that the layers are made of neo-Hookean materials with strain energy density functions

WI == CM - 3) = it (1- 3), W2 = C;(I - 3) = i2 (I - 3). (12)

The frequency of small amplitude oscillations is obtained by letting 1/ = 1+E, E ~ 1, in eqn
(8) and then solving the resulting second order, linear, ordinary differential equation:

(13)

which reduces to

(14)

for a single layer tube. Equation (14) compares with that obtained in Ref. [2].
To solve the problem of large amplitude oscillations partially, eqns (11) and (12) are

substituted into eqn (10) and the resulting equation is integrated subject to initial conditions
1/(0) = 1, 71(0) =0,

(15)

where

{

2p?" (1/2(1-a)_l)

1
"- POR

I
2 ' (1-a) fora#l,

1/P d1/ =
I 2p~ 2

-R2In(1/) fora=l,
po I

(16)

The frequency of oscillations is determined from

(17)
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where 7/*(7/* > 1) is the other root of eqn (15). The limitations on the strain energy density
functions for eqn (15) to possess a real root 7/* > 1 have been studied in detail in [2,6]. Applying
the same argument, it is assumed that WI and W2 are monotonically increasing with I and II.
Then 7/* > 1 will exist for any p~, and 7/(0) = 1, 7/ = 1/* represent the only two real roots of eqn
(15). It is also known that the improper integral in eqn (15) is finite.

THE GALERKIN METHODt

In order to obtain an approximate but complete solution by a Galerkin's procedure, eqn (8)
is first non-dimensionalized by introducing

Next, for oscillatory motions 7/(r) is assumed in the form

R 2 2

£\2==~
U 4>,' (18)

(9)

which involves three unknown parameters a, band n. The initial condition 7j(0) == 0 is trivially
satisfied while 7j(0) = 1 requires

a2
= 1+ b.

Considering 'r1 = 0 at 7/ = 7/*, another equation relating a and b is obtained,

(20)

(21)

From eqns (20) and (21), it is clear that Ibl < 1, b< O.
To determine the remaining parameter, n, Galerkin's orthogonalization process is followed.

The assumed form of 7/(T) is substituted into eqn (8) and the resulting equation is or
thogonalized with respect to weighting function cos nT over one complete cycle of oscillations,

(22)

where
z = cos nT,

and

2Pa2'" [C(1 + SI) - SJla2 4a2S1 + m1Sl b
2n2(1- Z2) Ca2(1 + S2)

G(z) = (1 + bz)'" + (I + a2S,) + bz +4(1 + bz) [(1 + a2Sd + bz] (I + a2SI) + bz

b
2n2m2(S2-S.)(I-z2) I ( a2SI )

+ 4[(1 + a2SI)+ bz][(1 + a2S,)+ bz] +(C-l)ln (1 + SI)- C In (1 + S2)+ n 1+ 1+ bz

(a
2
S2+ I) +bz bn

2
[ (a

2
S1 ) (1+ bZ)

+Cln(a2S.+I)+bz+2a2 m.zln I+ I + bz +m2zln S2+~

(23)

The integral defined by eqn (22) is evaluated by contour integration for a = I. The frequency of
oscillations for m1 = m2 = 1 is given by

(24)

tThe details of this process are omitted here since they are essentially the same as those given in Ref. [6).
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where

./ 2 2 2 2 A (1+2P)a 2+b2
-1 2

H= v(A -b )-A -a (1 + S.)V(A2_b2)+ v(1-b2) +a (St-2P)+1

c[B
2
- b

2
- a2B(S2 + 1) + a

2
(S. + l)A - A

2
+ b

2
]

+ V(B2- b2) V(A2- b2) ,

A = 1+a2Sh B = 1+a2S2.

(25)

For small amplitude oscillations, letting a -+ 1, b -+ 0, P -+ 0, and applying L'Hospital's rule
in eqn (24) a frequency expression identical with eqn (3) is obtained.

ILLUSTRATIVE EXAMPLE AND DISCUSSION OF THE RESULTS

To provide some numerical results, a tube of two layers with R2/R1=2, R3/R. =3, </J2/</J1 =2
and a = 1, 1.2, lA, 1.6 is considered and the frequencies of oscillations corresponding to
different initial pressures are determined by exact formulation. The results for a = 1 are
compared with those obtained by the approximate formulation.

The integral I."- 'ri -I d7/ does not seem to have a closed form solution. This integral is
evaluated numerically by Newton-Cotes integration formula (see, for example, Ref. [9], formula
25, 4040, p. 887). The interval of integration (1,7/*) is first divided into sub-intervals 0, 1+ 8),
0+8, 7/* - 8), (7/* - 8, 7/*). The inner interval is further divided into 1000 segments. The
integrals in the intervals 0,1 + 8) and (7/* - 8,7/*) are approximated by integrals in the intervals
(1 + E, 1+ 8) and (7/* - 8, 7/* - E) and these intervals are further divided into 500 segments. 8 is
chosen to be 10-4 and the smallest E not to cause numerical sensitivity on an IBM 370-145
machine is 0.5 x 10-7

• A good convergence is obtained at these values as it can be observed
from Figs. 1 and 2.

The maximum relative amplitude 7/* of the inner radius is plotted in Fig. 3 as a function of
the non-dimensionalized initial pressure P = P?n/cf>t for a = 1, 1.2, lA, 1.6. These curves display
a hardening behavior with increasing initial pressure.

Figure 4 shows the non-dimensionalized frequency w/wo (w2
= POR I

2
W

2/</Jh Wo = frequency of
small oscillations) plotted against the initial pressure P. A hardening behavior is observed for
a = 1.2, lA, 1.6 at relatively low values of P while the tube acts as a soft spring at large P. For
a = 1 a softening behavior is observed for all P. This behavior is more pronounced for small P.

For the same numerical data, the approximate expression for the frequency of oscillations
given by eqn (24) is evaluated in closed form by contour integration for a = 1. The isolated
points in Fig. 4 represent the results obtained by Galerkin's method. An inspection of Table 1
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Fig. 4. Frequencies vs pressure.

Table I. Comparison of cii for a I

TJ* P exact approximate

I 0.00000 1.36786 1.36786
1.2 0.22536 1.35313 1.35313
1.4 0.48885 1.33637 1.33888
1.6 0.78797 1.31937 1.32500
1.8 1.12017 1.31091 1.31145
2.0 1.48296 1.29416 1.29829
2.2 1.87405 1.27013 1.28554
2.4 2.29140 1.26247 1.27325

and Fig. 4 indicate an excellent agreement between the results obtained by exact and
approximate formulations. The approximate method avoids the singular points and the com
putation time is significantly reduced (0.12 sec as compared to II sec by the exact formulation
to compute a frequency).
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